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Abstract 
 
In this paper, we propose a feature-preserving mesh 
denoising algorithm which is effective, simple and easy to 
implement. The proposed method is a two-stage 
procedure with a bilateral surface normal filtering 
followed by integration of the normals for least squares 
error (LSE) vertex position updates. It is well-known that 
normal variations offer more intuitive geometric meaning 
than vertex position variations. A smooth surface can be 
described as one having smoothly varying normals 
whereas features such as edges and corners appear as 
discontinuities in the normals. Thus we cast feature-
preserving mesh denoising as a robust surface normal 
estimation using bilateral filtering. Our definition of 
“intensity difference” used in the influence weighting 
function of the bilateral filter robustly prevents features 
such as sharp edges and corners from being washed out. 
We will demonstrate this capability by comparing the 
results from smoothing CAD-like models with other 
smoothing algorithms. 
 
 
1. Introduction 
 
 The ease-of-use and affordable 3D scanning devices 
[12], [13] have been widely used in various domain of 
applications ranging from reverse engineering to 
character modeling in animation production. These 
models are often represented as triangular meshes as 
hardware graphics cards are optimized for triangle 
rendering. Despite of using high-fidelity scanning, 
undesirable noise is inevitably introduced from various 
sources such as local measurements, limited sampling 
resolution and algorithmic errors. Models extracted from 
CT or MRI [14] volumetric data also result in detailed 
meshes with significant amount of noise. Thus, detailed 
noisy models need to be smoothed or denoised before any 
subsequent mesh processing such as simplification [15] 
and compression [16] could be successfully applied.  
 Mesh denoising has been an active research area since 
the pioneer work done by Taubin [1]. Research efforts 
were initially focused in surface fairing in which surface  

Figure 1. Denoising a model: The leftmost column is 
the original noise-free model. Gaussian noise is added 
in the middle column. The mesh is smoothed with our 
proposed algorithm. The top row shows the mesh 
details while the bottom row displays the mean 
curvature visualization of the mesh. 

smoothness is enhanced at the expense of sharp features 
being blurred [1], [3], [4]. Attentions are then turned to 
smoothing with features preserved. Feature-preserving 
filtering techniques used in 2D image denoising are 
extended to address the denoising problems with 3D 
mesh. Mostly notable techniques are anisotropic diffusion 
[7], robust estimation [18] and bilateral filtering [9]. 
Researches [10], [18] have shown that these three 
techniques do have strong connections with each other. In 
this paper, we choose to first apply bilateral filtering on 
the surface normals and then evolve the mesh with least 
squares error with respect to the filtered normal field. 
Though recent researches of bilateral filtering on 3D 
mesh [5], [6] have delivered promising results in general, 
preservations of sharp edges and corners on CAD-like 
models are still far from satisfactory. Since surface 
variations are best described with the first-order normal 
variation, we propose to apply the bilateral filtering on 
the surface normals first and evolve the mesh with least 
squares error update with respect to the filtered normal 
field. Our major contribution is the formulation of the 
intensity difference on the normal field so that bilateral 
filtering on surface normals can be properly applied. 
 The rest of the paper is organized as follows: Section 2 
will present a brief overview of related work in the 



literature. The mesh notation used in this paper together 
with the working principle of bilateral filtering will be 
explained in Section 3. In Section 4, we will explain the 
application of bilateral filtering on surface normals 
together with our novel formulation of intensity 
difference. We will also discuss how to update the mesh 
vertex positions based on the smoothed surface normals. 
We will outline our algorithm in pseudo-code. Results 
and comparison with other smoothing algorithms are 
done in Section 5 and finally conclusions are drawn in 
Section 6. 
 
2. Related Work 
 
 Mesh denoising has been an on-going research 
problem and a wide variety of algorithms have been 
proposed. Taubin [1] pioneered a signal processing 
approach to mesh smoothing based on the definition of 
Laplacian on mesh. He proposed an |λ µ  algorithm 
which uses alternative signed smoothing to prevent 
shrinkage problem associated with Laplacian smoothing. 
Desbrun [3] then proposed a geometric diffusion 
algorithm which performs smoothing in the normal 
direction and inhibits vertex shift in flat regions. The rate 
of smoothing is determined by the mean curvature. 
Guskov et al. [4] introduced a smoothing application from 
the design of a general signal processing framework 
based on subdivision. These algorithms mentioned so far 
are isotropic in nature. Thus, noise and salient features 
such as edges and corners are indiscriminately smoothed. 
To address this shortcoming, anisotropic diffusion 
schemes have been recently proposed. 
 Taubin [2] proposed a two-phase linear isotropic mesh 
filtering method. In his approach, surface normals are 
first filtered by applying a rotation determined by the 
weighted sum of neighboring surface normals. Then the 
vertex positions are updated by solving a system of linear 
equations using the least squares error method. He refers 
this as anisotropic Laplacian smoothing as the weights 
applied to the neighboring vertices are matrices rather 
than scalars. Similarly, other researchers like Yagou, 
Ohtake and Belyaev [11] perform median smoothing on 
the surface normals first and compute a mesh evolution to 
match the new surface normal field. 
 Imaging denoising is a major research area in image 
processing and computer vision. Recently, Fleishman et 
al. [6] and Jones et a. [5] have independently extended the 
bilateral filtering [9] from image denoising to mesh 
denoising and achieve satisfactory results. Fleishman 
approached the smoothing problem by iteratively moving 
the vertices in the normal direction with an offset 
determined from bilateral filtering of the heights of 
neighboring vertices over the tangent plane. On the other 
hand, Jones et al. compute the projections of current 
vertices on neighboring tangent planes and apply bilateral 

filtering to vertex predictions to obtain a robust estimate 
of vertex positions. The latest work from Hildebrandt et 
al. [19] not only considered sharp edges preservation but 
also protected and recovered non-linear surface features 
through their proposed prescribed mean curvature flow. 
 Tasdizen [8] pointed out that surface normals play an 
important role in surface denoising as surface features are 
best described with the first-order surface normals. 
 
3. Basic Concepts 
 
 In this section, we will first define the notation used in 
this paper for mesh representation. Then the working 
principle of bilateral filtering on 2D image denoising is 
introduced. 
 
3.1.  Mesh Representation 
 
 Geometrically, a triangle mesh is a piecewise linear 
surface consisting of triangular faces pasted together 
along their edges. The mesh geometry can be denoted by 
a tuple ( , ),K V where K is a simplicial complex 
specifying the connectivity of the mesh simplices and 

1{ , , }mV = v v… is the set of vertex positions defining the 

shape of the mesh in .3R The three different types of  
simplex are: 0-simplex, 1-simplex and 2-simplex. A 0-
simplex, represented by { },i=v v is a vertex, a 1-simplex, 

{ , },i j=e v v is an edge and a 2-simplex, 

{ , , },i j k=f v v v is a face. In this paper, we represent the 
vertices, edges and faces by their corresponding indices. 
Besides, the terms face and triangle, surface and mesh are 
used interchangeably. 
 
3.2. Bilateral Filtering 
 

The bilateral filter is a nonlinear, feature preserving 
image filter, proposed by Smith and Brady [17], and 
separately by Tomasi and Manduchi [9]. Although, the 
filter is initially designed to be an alternative to 
anisotropic diffusion [7], recent researches demonstrate 
that it has close connections with robust estimation and 
anisotropic diffusion [10], [18]. 

Following the formulation of Tomasi and Manduchi 
[9], the bilateral filtering for an image ( )I u , at 

coordinate ( ),x y=u , is defined as: 
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Figure 2. (a) Noisy mesh. (b) Normals within a unit circle. (c) Projections of the normal differences ˆ ˆ( )i a−n n and 
ˆ ˆ( )i b−n n along the ˆ in direction. 

where ( )N u is the neighborhood of u and defined to be 

the set of points { }: 2 .cρ σ− < =   i iq u q  The spatial 
smoothing function is a standard Gaussian filter 

2 2/ 2( ) cx
cW x e σ−=  with the standard deviation cσ  and 

the influence function is also chosen to be a standard 

Gaussian filter 
2 2/ 2( ) sx

sW x e σ−=  with the standard 
deviation .sσ  
 The output of the filter is the weighted average of the 
input where the weight of each pixel is computed using 
a standard Gaussian function cW in the spatial domain 
multiplied by an influence function sW  in the intensity 
domain that decreases the weight of pixels with large 
intensity differences. Therefore, the value at a pixel u is 
influenced mainly by pixels that are spatially close and 
have a similar intensity. Since large intensity differences 
are regarded as image features and penalized by the 
influence function sW , so smoothing across features are 
inhibited. 
 
4. The Algorithm 
 
 In this section, we will first show how to apply 
bilateral filtering on surface normals and our 
formulation of the intensity difference. Then, we will 
introduce the least squares error update of the vertex 
positions with respect to the filtered normal field. 
 
4.1. Surface Normal Filtering 
 
 We extend the bilateral filtering applied on 2D 
images to filter the surface normals of 3D triangular 
meshes. For a mesh face i  with unit surface normal 
ˆ in and centroid at point ic , the bilateral filtered normal 

in  at the face i  is defined as: 
 
 

   
Figure 3. Left: Noisy pyramind model. Middle: 
Model smoothed with Fleishman's bilteral filtering 
on vertex positions (note the corrupted edges). Right: 
Model smoothed with our proposed algorithm. 
Sharp edges are preserved. 
 

( )

( )

ˆ( ) ( )

,
( ) ( )

c j i s ij j
j N i

i
c s ij

j N i

W W d

W W d
∈

∈

−

=
−

∑
∑ j i

c c n

n
c c

 

 
 

(2) 
 

 
where ( )N i = { }: 2j i cj ρ σ− < =   c c is the set of 

neighborhood faces j of face i  with unit  surface 
normal ˆ jn  and ijd  is the “intensity difference” between 

the two face normals ˆ in and ˆ .jn  
The intensity difference is defined to be the 

projection of the normal difference vector ˆ ˆ( )i j−n n on 

the surface normal ˆ ,in  i.e. 
 

ˆ ˆ ˆ( )ij i i jd = −n n ni  (3) 

 
In Figure 2a, face neighborhoods are considered if 

the Euclidean distance between the face centers are 
within a defined radius. In Figure 2b and 2c, normal 
differences and their projections along the face normal 
ˆ in are computed. 

Though the formulation is simple, it provides an 
effective measure of the degree of dispersion of the 

ˆ in ˆ an

ˆ bn

ˆ ˆ( )i a−n n

ˆ ˆ( )i b−n n ˆ in

ˆ ˆ( )i a−n n

ˆ ˆ( )i b−n n

ˆ ˆ ˆ( )i i a−n n ni

ˆ ˆ ˆ( )i i b−n n ni

icac

bc

ˆ inˆ an

ˆ bn



neighborhood face normals ˆ jn  at the face normal ˆ .in  
Figure 3 illustrates the advantage of applying bilateral 
filtering on surface normals over Fleishman’s approach 
in which bilateral filter is used to determine the vertex 
positions from the heights of the neighboring vertices 
defined over the tangent plane. Sharp edges along the 
pyramid model are properly preserved when using our 
proposed algorithm.  
 For each face i , we use the bilateral filtering in 
equation (2) to compute the filtered normal in , then 
normalize to i′n  and use it as the smoothed normal. The 
bilateral filtering and normalization operations can be 
iterated to achieve a desired level of smoothing. Figure 
4 above shows the results from different stages of the 
smoothing process. Figure 4a is the original cube with 
surface normals displayed. Each vertex is then displaced 
along the normal by zero-mean Gaussian noise with 

0.1noiseσ =  of the mean edge length as shown in 
Figure 4b. In Figure 4c, the noisy surface normals are 
smoothed with the bilateral filter. Notice that the filtered 
normals are very close to the original normals. This 
illustrates that our formulation of “intensity difference” 
together with the bilateral filtering is effective at 
removing noise from surface normals while preserving 
features such as edges and corners. The final smoothed 
model as shown in Figure 4d is obtained via least 
squares error (LSE) update of the vertex positions. The 
LSE vertex positions update is discussed in the next 
section. 
 
4.2. LSE Vertex Position Update 
 
 Since a face normal should be perpendicular to the 
three edges of a triangular face i , so once the filtered 
face normal i′n  of the face is obtained, the 
corresponding triangle vertices ( , , )i j kv v v  are then 
updated under the following family of simultaneous 
linear equations: 
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The system of equations (4) in reconstructing the 

vertex positions with respect to a given field of face 
normals has no solution for general meshes according to 
the analysis from Taubin in his paper [2]. He proposed 
to find the least squares solution of equation (4) which is 
equivalent to minimize the following cost function 
defined on the mesh 
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Figure 4. Bilateral Filtering of Surface Normals 
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where ijF denotes the set of faces that are adjacent to the 

edge { , }.i j  Based on this metric and derivatives, the 
vertex positions can be updated as 
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where λ is the iteration step size defined in Taubin’s 
paper [2]. 
 Figure 1d shows the smoothed mesh from the vertex 
positions update according to equation (6) for the given 
filtered surface normal field in Figure 1c. 
  We can now state the overall mesh denoising 
algorithm in the following pseudo-code: 
 
For each face normal filtering iteration fN : 

 For each mesh face i : 

  Collect neighbor faces j  s.t. 2 cj i ρ σ− < =   c c  



  Compute normalized bilateral filtered normal i′n at 
face i  

For each vertex position update iteration Nv : 

 For each mesh vertex i : 
  Compute new vertex position with LSE update  
 
The parameters of the algorithm are: ,cσ sσ , ,λ and the 
number of iterations fN and .vN  Appropriate values for 
the standard deviations sσ and sσ are critical in features 
preservation. We follow the interactive approach 
proposed by Fleishman in setting the value of .cσ  User 
selects a face center on the mesh where the surface is 
expected to be smooth and define a radius of 
neighborhood from that point. This radius is then 
assigned to .cσ For the value of ,sσ we set it to the 
standard deviation of the normal difference projected on 
the surface normal at the selected point within the 
defined radius. In our experiment, we set the values for 

,fN vN and λ  to be 3, 10 and 0.01 in order to obtain 
quality smoothing results. 
 
5. Results 
 
 We have implemented the mesh denoising algorithm 
as described in the previous section. All meshes are 
rendered with flat shading to show faceting. To 
demonstrate our feature preserving capability on CAD 
models, we compare our results to the results of the 
mesh median filtering from Yagou [11], bilateral mesh 
filtering from Fleishman [6] and the mean curvature 
flow (MCF) from Desbrun [3]. We summarize the mesh 
statistics and the denoising time collected on a 1.5GHz 
Pentium™ (M) in Table 1. In Figure 5 top row, we can 
see that our algorithm can deliver quality smoothing in 
mostly flat region while preserving the sharp edges of 
the tube model. Unlike the case with Fleishman’s 
algorithm, in which large noises along the edges are 
mistakenly treated as features and result in corrupted 
edges. Though median filtering by Yagou [11] can 
preserve the edges, crispy appearance is unavoidable 
owing to the nature of order statistic-based filter. Sharp 
edges are completely smoothed out with MCF as 
feature-preserving is not considered in the original 
algorithm design. Similarly in Figure 5 bottom row, we 
can see that our algorithm performs equally well in 
preserving corner features of the Fandisk model. Our 
intensity difference formulation can not only offer a 
strong edge and corner preserving capability, but also be 
able to smooth models without losing the fine details. 
We test our algorithm on the Stanford Bunny model to 
illustrate this point. In the Figure 6c, it can be seen that 
the details around the eye region are properly preserved 

and so are the details near the nose, mouth and the leg. 
The mean curvature visualizations from Figure 6d to 6c 
provide a better comparison between the original and 
the smoothed model. 
 

Table 1. Mesh statistics and denoising times. (a), (b), 
(c) and (d) are the denoising times collected from 
Fleishman's, Desbrun's, Yagou's and our algorithm 
accordingly. 

 
 Faces/ Denoising Time (seconds) 
Model Vertices (a) (b) (c) (d) 
Tube 16128/8064 4 4 12 3 
FanDisk 12946/6475 3 3 10 2 
 
6. Conclusion 
 
 Bilateral filtering is proven to be a robust and 
efficient denoising technique in 2D images and 3D 
meshes. As surface normals are better in describing the 
surface variation, our application of bilateral filter on 
surface normals can best preserve the sharp edges and 
corners while deliver promising smoothing results. This 
application is made possible with our formulation of the 
intensity difference which helps in penalizing averaging 
of normals across surface features. We have shown that 
our algorithm is simple, easy to understand and 
relatively efficient as compared with other recently 
developed smoothing algorithms. 
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